If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+3x-11=0
a = 8; b = 3; c = -11;
Δ = b2-4ac
Δ = 32-4·8·(-11)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-19}{2*8}=\frac{-22}{16} =-1+3/8 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+19}{2*8}=\frac{16}{16} =1 $
| 8/3+x=5/3+x | | 5x-12=8x-12 | | 10x-5=7x-1 | | -x+7x+16x+-15x-(-14)=0 | | 4x-18=2x+6+36 | | 0=-40x^2+44x-8.1 | | (−8x)=+x+(−2x) | | x/14+12=4/7 | | 10÷x=5 | | x14+12=47 | | 8s-19s+-6s-(-16s)-7=13 | | 7x-7-4x=70+4x | | 3X(n+1)=2X(n+5) | | 12g-12g+g+2g-2g=19 | | a^2+4a-8=0 | | b-b+4b+b+b-6=12 | | 4.x=-8 | | K-k+k+5k+2=14 | | 3n-3=4n+- | | 6v-6v+3v-1=5 | | -10=4/5x | | 12c+-15c-(-10c)+-11c+11c=7 | | 1/2x+4=9/5 | | -7b+7b-(-14b)-(-3b)+7=-10 | | y=-12.216+41.54 | | C=30.75-0.25x | | 8-9.7t=-67.9 | | 14s+-12s=-14 | | G-2=-1/4(4g-2) | | 2q+15q-(-7)=-10 | | 13d-9d+d-4=11 | | 3x-6-2x+2=3(2x-4) |